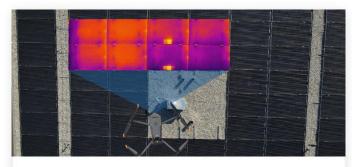

Lokale Elektrizitätsgemeinschaften (LEG) in Gemeinden

Organisation

Team: Elektroingenieure | Energieingenieure | Baustatiker (Fassadentechnik) | Architektin | Studenten

Co-Geschäftsleiter: Stephan Roth | Samuel Summermatter | Andreas Ammann


Geschäftsbereiche

PV- Anlagen planen

Integrale Energieplanung

Betrieb von Energiesystemen

Expertise

Infrastruktur

Inhalt

- Überblick LEG
- LEG-Stakeholder
- Rolle der Gemeinde
- Optimierungen innerhalb LEG
- Wirtschaftlicher Nutzen
- Planungsablauf
- Fazit und Ausblick

ZEV und LEG

Eigenverbrauch am Ort der Produktion EnG Art. 16 Ein **Praxismodell VNB Endverbraucher** Mehrere Endverbraucher z.B. EFH oder ohne Zusammenschluss **KMU** (Kunden des

Verteilnetzbetreibers)

ZEV: Zusammenschluss zum **Eigenverbrauch (Art. 17)**

Geregelter Zusammenschluss von mehreren Endverbrauchern zu einem Kunden des Verteilnetzbetreibers

Neu: LEG: Lokale Elektrizitätsgemeinschaft

Geregelte Gemeinschaft im gleichen Netzgebiet, auf der gleichen Netzebene und örtlich nahe beieinander am gleichen Elektrizitätsnetz angeschlossen

ZEV und LEG

Eigenverbrauch am Ort der Produktion EnG Art. 16

Ein
Endverbraucher

Praxismodell VNB

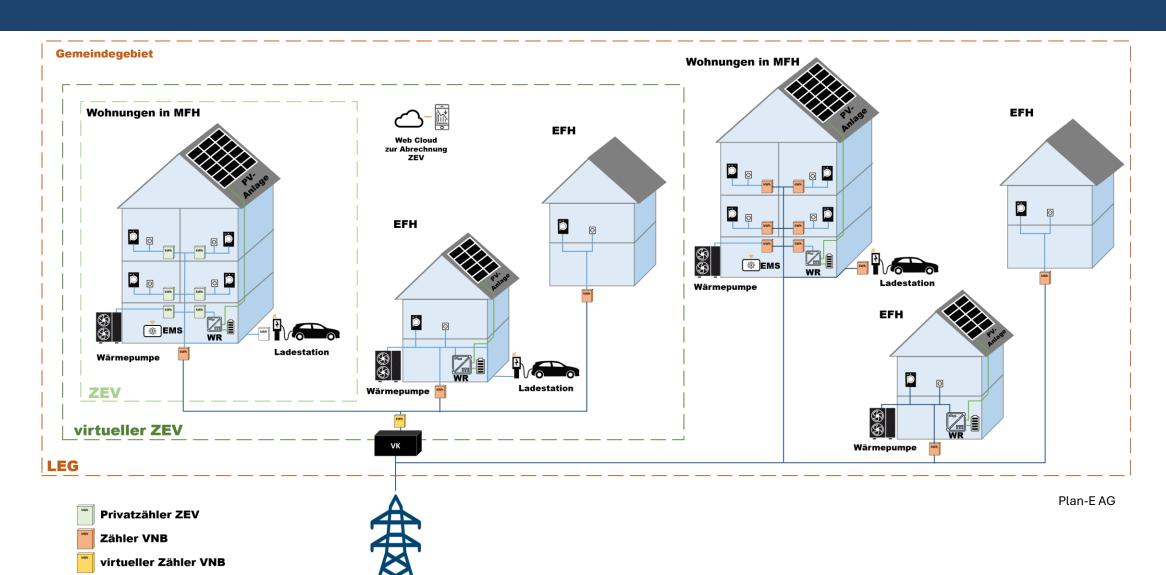
ZEV: Zusamm
Eigenverbra

z.B. EFH oder KMU Mehrere Endverbraucher ohne Zusammenschluss (Kunden des Verteilnetzbetreibers)

Virtuell möglich, wenn von VNB angeboten

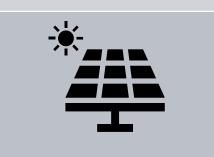
ZEV: Zusammenschluss zum Eigenverbrauch (Art. 17)

Geregelter Zusammenschluss von mehreren Endverbrauchern zu einem Kunden des Verteilnetzbetreibers



Neu: LEG: Lokale Elektrizitätsgemeinschaft

Geregelte Gemeinschaft im gleichen Netzgebiet, auf der gleichen Netzebene und örtlich nahe beieinander am gleichen Elektrizitätsnetz angeschlossen


ZEV, vZEV und LEG

Stromnetz

LEG-Stakeholder

Betreiberin

- ⇒ Informationspflichten
- ⇒ Vertretung ggü. VNB
 - + Mittel zur Zielerreichung
 - + Stärkung Gemeinschaft
 - + Teilnahme an Energiewende ermöglichen

Produzenten

Vergütung ≥ Energiepreis + 40% Netzkosten

- + Attraktive Vergütung
- + Höhere Investitionssicherheit
- + Ertragsoptimierung

Endverbraucher

LEG-Strom Vergütung

- ≤ Energiepreis + 40% Netz.
- + Günstiger Strombezug
- + Beteiligung an Energiewende
- + Strom von und Identifikation mit lokalen Erzeugungsanlagen
- + Kostenoptimierung

Speicherbetreiber

- + Erhöhung der Menge an Energie mit vergünstigtem Netzentgelt
- + Zusätzliche Ertragsmöglichkeiten
- + Einsparung Netzausbau?

LEG-Stakeholder

Betreiberin

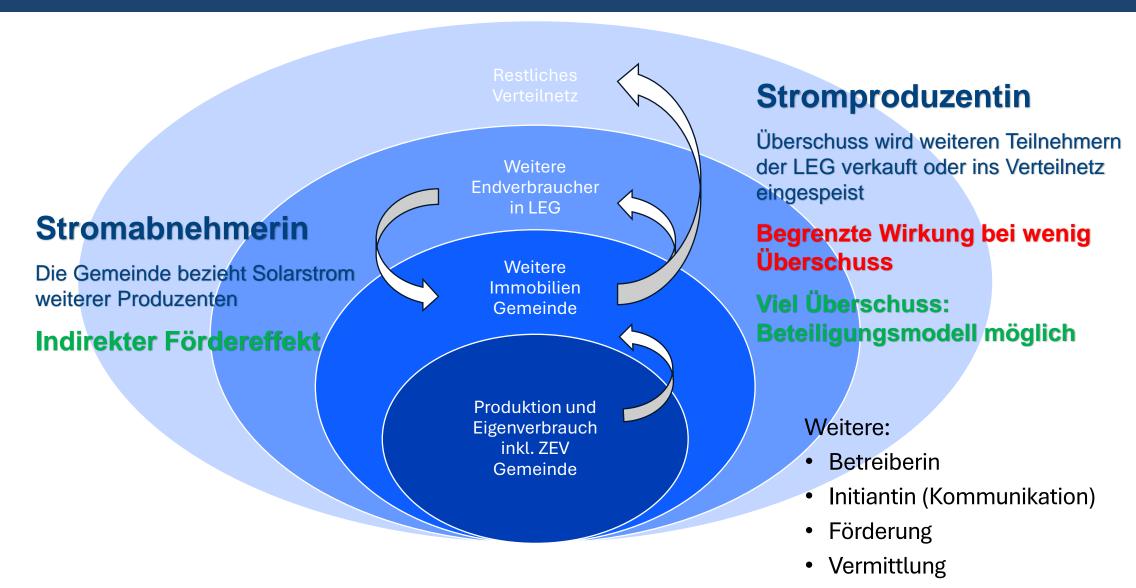
- ⇒ Informationspflichten
- ⇒ Vertretung ggü. VNB
 - + Mittel zur Zielerreichung
 - + Stärkung Gemeinschaft
 - + Teilnahme an Energiewende ermöglichen

Produzenten

Vergütung ≥ Energiepreis + 40% Netzkosten

- + Attraktive Vergütung
- + Höhere Investitionssicherheit
- + Ertragsoptimierung

Endverbraucher


LEG-Strom Vergütung

- ≤ Energiepreis + 40% Netz.
- + Günstiger Strombezug
- + Beteiligung an Energiewende
- + Strom von und Identifikation mit lokalen Erzeugungsanlagen
- + Kostenoptimierung

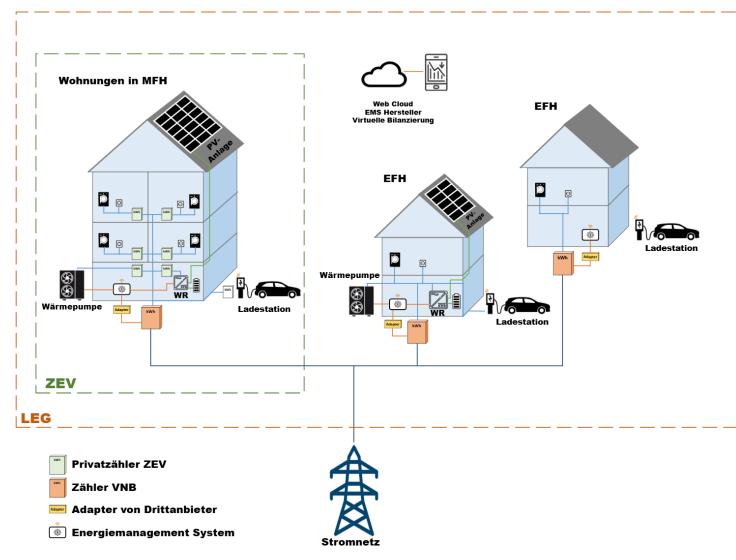
Speicherbetreiber

- + Erhöhung der Menge an Energie mit vergünstigtem Netzentgelt
- + Zusätzliche Ertragsmöglichkeiten
- + Einsparung Netzausbau?

Rollen von Gemeinden in einer LEG

Netzbetreiber

Netzbetreiber hat eine wichtige Rolle innerhalb LEG

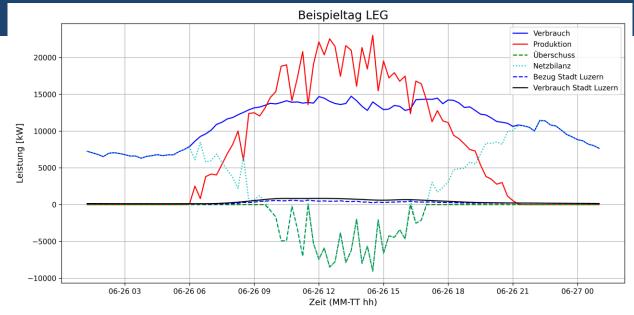

VNB muss LEG ermöglichen

Chancen für VNB

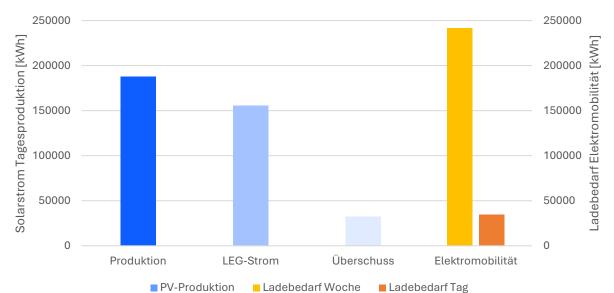
- Chancen vor allem f
 ür EVU
 - -> Einfluss auf Image des VNB
- Solarstrom Absatz innerhalb des Netzgebietes
 - -> Günstigere Netzgebühren für alle
- Als Betreiberin netzdienliche Rahmenbedingungen setzen

Netz- und Bilanzoptimierung innerhalb LEG

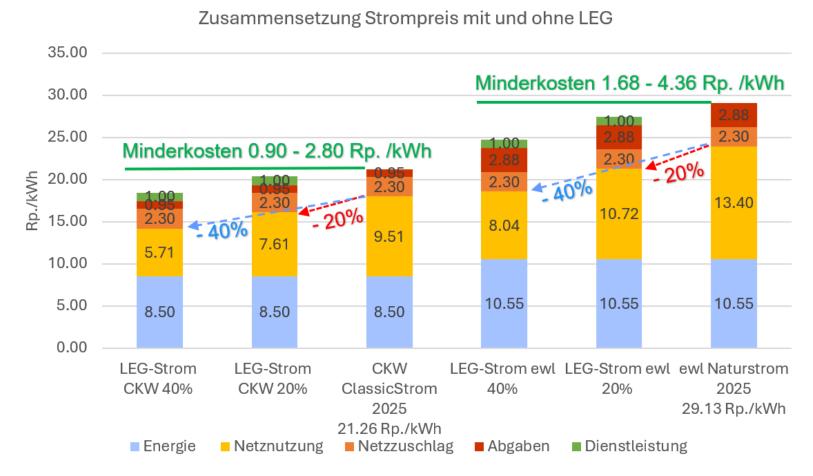
- Netzdienliches Verhalten kann zusammen mit Abregelung den Netzausbaubedarf mindern
- Bilanzoptimierung kann den wirtschaftlichen Nutzen der LEG erhöhen
- Mögliche Mittel:
 - Batteriespeicher
 - Tarifliche Anreize
 - Bilanzoptimierung analog zu Eigenverbrauchsoptimierung



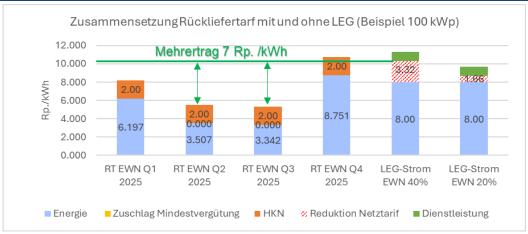
Beispieltag Stufe Unterwerk Stadt Luzern (2050)

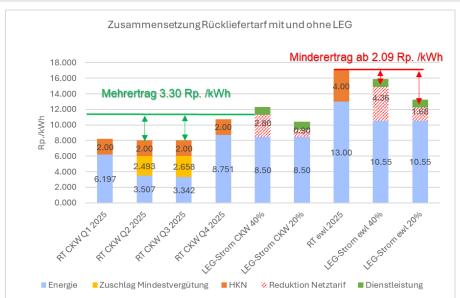

- Beispieltag 26.06.2050: Überschuss 32.56 MWh
 - Entspricht 2'309 Batteriespeicher mit 14.1 kWh Kapazität
 - Ladebedarf Elektromobilität 2050:
 242 MWh pro Woche
 - Ladebedarf pro Tag entspricht Tagesüberschuss -> Optimierung

Stadt Luzern: Fahrstrecke 11.9 km/ Tag und Person ergibt bei 17 kWh/100 km einen wöchentlichen Ladebedarf von 14.16 kWh / Person


14.16 kWh x 85'535 Personen / 5 Unterwerke = 242'252 kWh

26. Juni 2050: LEG-Überschuss und Ladebedarf


Wirtschaftlicher Nutzen Teilnehmer



Grafik: Plan-E, Zusammensetzung Strompreis 2025, ewl

- Abschlag für LEG-Strom nur auf Netznutzungsentgelt
- Kosten Dienstleistung berücksichtigen
- Reduktion auf Gesamttarif im Beispiel ewl: ca. 6 – 15%
- Beispiel CKW: zusätzlich Abschlag auf Leistungtarif
- Anreize zur Nutzung von Solarstrom durch tiefe Tarife
- Anreize zur Produktion von Solarstrom durch hohe Tarife

Wirtschaftlicher Nutzen Produzenten

Grafik: Plan-E AG, Rückliefertarif (RT) für eine Anlage bis 30 kW mit und ohne LEG

- LEG-Stromvergütung: Energie + Reduktion (+ Dienstleistung)
- Wirtschaftlicher Nutzen abhängig von Rückliefervergütung (Bsp. Mindestvergütung: ab 2026 bei <30 kW: 6 Rp./kWh, 30 150 kW: 5.8 1.2 Rp./kWh)
- Tiefe Marktpreise im Sommerhalbjahr = Mehrertrag bei Verkauf innerhalb LEG
- Freie Aufteilung Mehrertrag an Endkunden und Produzenten (Nach Abzug Dienstleistung)

Prozessablauf

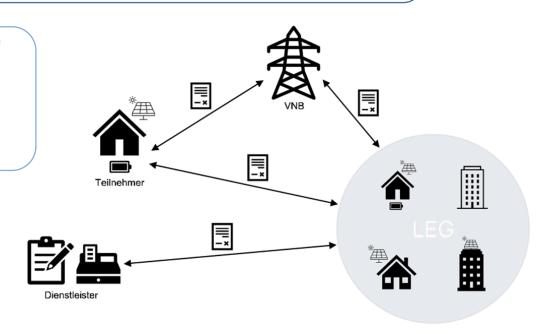
Fachliche Begleitung

• Erste Ideen

- Teilnehmerkreis: offen/ geschlossen, Beteiligungsmodell, Produzenten, ZEV, etc.
- Räumliche Ausdehnung: Maximal, beschränkt auf Trafokreis, Netztopologie
- Betriebsmodell: Abrechnungs-LEG, «Smarte LEG» (Netz- oder Verbrauchsoptimiert)

Vorabklärung

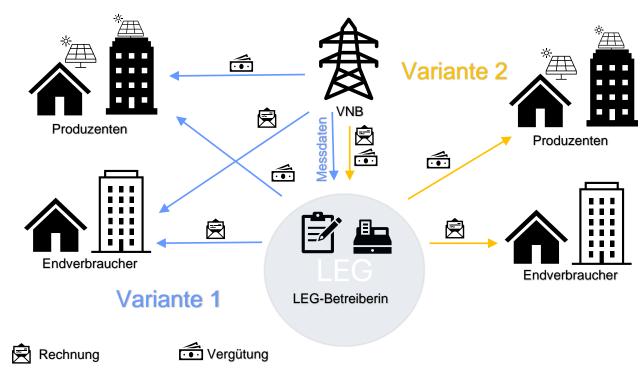
- Voraussetzungen gemäss Rahmenbedingungen prüfen
- Bilanzoptimierungen planen (Speicher, Energiemanagement, etc.)
- Energie- und Wirtschaftlichkeitsanalysen
- Varianten und mögliche Entwicklungen der LEG
- Grundsatzentscheid aller Teilnehmenden


Konzept

 Planung und Ausführung PV-Anlagen, Speicher (unabhänig von LEG)

Verträge

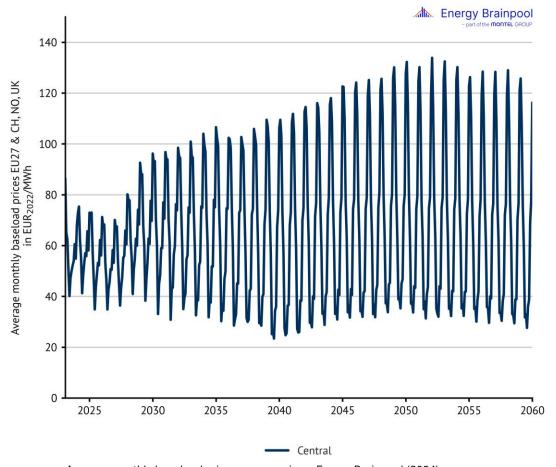
• Gründung und Anmeldung bei VNB



Grafik: Plan-E AG, Beispiel Vertragsverhältnisse

Betrieb

Abrechnung der LEG


- Abrechnung direkt durch VNB oder durch VNB an Gemeinschaft möglich
- Stromtarif kann individuell bestimmt werden
 - Innovative Modelle möglich
 - Einseitige Bevorzugung möglich
- Dynamisches Teilnehmerfeld erwartet

Grafik: Plan-E AG, Zahlungs- und Verrechnungsflüsse nach Abrechnungsvariante

Fazit und Ausblick

- Offene Fragen in der Umsetzung bleiben -> Plan-E ist am Puls!
- Zukünftig tiefere Strompreise bei hoher PV-Einspeisung
- Eigenverbrauch und Stromverkauf innerhalb einer LEG zu attraktiven Tarifen gewinnen an Bedeutung
- Eine LEG kann bilanz-/netzoptimiert oder als reine Abrechnungslösung betrieben werden
- Gemeinden können als Betreiber, Stromabnehmer und Produzenten Schlüsselrollen einnehmen
 - -> Vieles gilt auch für Immobilienunternehmen, grosse Areale, etc.
- Unterschiedliche Voraussetzungen und Chancen benötigen individuelle Lösungen
 -> Wir unterstützen Sie gerne!

Average monthly baseload prices, power prices, Energy Brainpool (2024)

